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Abstract

Knotted structures are commonly found in circular DNA and along the
backbone of certain proteins. In order to properly estimate properties of these
three-dimensional structures it is often necessary to generate large ensembles
of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons
are called equilateral random polygons). However finding efficient algorithms
that properly sample the space of equilateral random polygons is a difficult
problem. Currently there are no proven algorithms that generate equilateral
random polygons with its theoretical distribution. In this paper we propose a
method that generates equilateral random polygons in a ‘step-wise uniform’
way. We prove that this method is ergodic in the sense that any given equilateral
random polygon can be generated by this method and we show that the time
needed to generate an equilateral random polygon of length n is linear in terms
of n. These two properties make this algorithm a big improvement over the
existing generating methods. Detailed numerical comparisons of our algorithm
with other widely used algorithms are provided.

PACS numbers: 02.40.Sf, 05.40.Fb
Mathematics Subject Classification: Primary 57M25, secondary 92B99

1. Introduction

Knots and links (i.e. interlocked rings) are commonly found in nucleic acids and proteins. DNA
knots and links appear as the product of random cyclization reactions of DNA molecules in
solution [43, 46] and in confinement [2], as products of enzyme mediated biochemical reactions
such as those mediated by site-specific recombinases [6, 8, 9, 44, 51], topoisomerases [7, 10,
4 To whom correspondence regarding the computational aspect of the paper should be addressed.
5 To whom correspondence regarding the theoretical aspect of the paper should be addressed.
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22, 55] and condensins [25, 40, 49] and as nanotechnological devices [35, 45]. Furthermore
they are also found in some biological systems such as some bacterial and plant viruses
[3, 31] and bacteria harvoring mutations in their topoisomerases [47]. On the other hand, links
are found in newly replicated bacterial chromosomes [21] as well as in mitochondrial DNA
from trypanosomes (reviewed in [28]). Knots and links are also found along the backbone of
some proteins. Recent studies of some protein crystal structures from viruses [57], bacteria
[26] and humans [52] have revealed knotted structures in a wide variety of enzymes such
as RNA methyltransferases [38], kinases [57] and transmembrane protein [26]. Knots have
posed a new paradigm in protein folding and may have important functional and evolutionary
implications [29, 30, 50, 52]. A few examples of linked protein rings have been reported
and they are believed to provide stability to the complex they are part of. These include the
proteins that form the capsid of certain viruses (e.g. [56]), proteins in thermofilic organisms
[5] as well as some engineered proteins [4].

In order to analyze and understand these biological data it is often necessary to generate
large ensembles of simulated and non-correlated circular molecules [1, 3, 27, 29, 34, 52, 54],
therefore fast and reliable algorithms to generate non-correlated random polygons are needed.

The simplest representation of a circular molecule is by a closed equilateral random
walk in 3-space (beginning at the origin) with n edges (length n) [19, 20], where each edge
represents one or more monomers [32]. There are a few algorithms that generate ensembles of
such closed equilateral random walks. These include the crankshaft algorithm [27, 36] and the
hedgehog algorithm [27, 41]. In the crankshaft algorithm, one starts from the regular n-gon
(with unit edge length) in the plane. At any given step, two points in the polygon are selected
at random. These two points define an axis that separates the polygon into two chains. One of
the chains is selected at random and rotated around the axis by a random angle (the segments
are allowed to cross each other in this process). The advantage of this method is that it has
been shown to be ergodic [36]. That is, any possible configuration of an equilateral random
polygon can be generated by this method. However, due to the high correlations of the edges
generated this way, the above rotation process must be repeated O(n) times to effectively
eliminate any obvious correlation. Consequently, the run time needed for this algorithm to
generate an equilateral random polygon of length n is on the order of O(n2). The hedgehog
algorithm (described later), on the other hand, is faster (with a run time of O(n) for generating
an equilateral random polygon of length n), but it is unknown whether it is ergodic.

In this paper, we propose a new method for generating (non-correlated) equilateral random
polygons that is ergodic and fast. In section 2 we give the formal definition of equilateral
random polygons and provide a brief list of known theoretical results on equilateral random
polygons. These results will be used to verify our numerical results in section 5. In section 3 we
give a detailed description of our new algorithm. We then provide a proof that this algorithm
is ergodic and that the computation time increases linearly with the length of the polygon
(section 4). In section 5 we provide numerical results obtained using our new generating
algorithm and compare them with the corresponding theoretical results or results obtained
using the crankshaft algorithm. It is important for us to point it out to our reader that although
all the numerical tests carried out in this paper seem to show that our generating method
samples the space of equilateral polygons uniformly, we have not been able to provide a
rigorous proof for this.

2. Basic facts about equilateral random polygons

Let us formally define the equilateral random polygons first. Suppose Y1, Y2, . . . , Yn are
n independent random vectors uniformly distributed on S2 (so the joint probability density
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function of the three coordinates of each Yj is simply 1
4π

on the unit sphere and 0 otherwise).
An equilateral random walk of n steps, denoted by EWn, is defined as the sequence of points
in the three-dimensional space R3: X0 = O,Xk = Y1 + Y2 + · · · + Yk, k = 1, 2, . . . , n. Each
Xk is called a vertex of the EWn and the line segment joining Xk and Xk+1 is called an edge
of EWn (which is of unit length). If the last vertex Xn of EWn is fixed, then we have a
conditioned random walk EWn|Xn. In particular, EWn becomes a polygon if Xn = O. In this
case, it is called an equilateral random polygon and is denoted by EPn. The joint probability
density function f (X1, X2, . . . , Xn) of the vertices of an EWn is f (X1, X2, . . . , Xn) =
ϕ(U1)ϕ(U2) · · · ϕ(Un) = ϕ(X1)ϕ(X2 − X1) · · · ϕ(Xn − Xn−1).

Let Xk be the kth vertex of an EWn (n � k > 1), its density function fk(Xk) is defined
by the integral ∫

ϕ(X1)ϕ(X2 − X1) · · · ϕ(Xk − Xk−1) dX1 dX2 · · · dXk−1 (1)

and has the closed form fk(Xk) = 1
2π2r

∫ ∞
0 x sin rx

(
sin x

x

)k
dx [42]. In the case of EPn, the

density function of the vertex Xk can be approximated by a Gaussian distribution, as given in
the following theorem.

Theorem 1. [13, 16, 17] Let Xk be the kth vertex of an EPn and let hk be its density function,
then

hk(Xk) ≈
(√

3

2πσ 2
nk

)3

exp

(
−3|Xk|2

2σ 2
nk

)
, (2)

where σ 2
nk = k(n−k)

n
and the error of the estimation is at most of the order of O

(
1

k5/2 + 1
(n−k)5/2

)
.

This tells us that the distribution of Xk of an EPn is approximately Gaussian. From this
theorem one can then derive some important results concerning equilateral random polygons
which can be used to check how likely a generating algorithm is producing equilateral random
polygons with the correct distributions. One such result is listed in the following corollary.

Corollary 1. Assume that n = 2k is even and let r = |Xk|, which is the distance between the
origin and the middle vertex Xk of the polygon. Then r has an estimated probability density
function

g′(r) ≈ 4πr2

(√
6

πn

)3

exp

(
−6r2

n

)
. (3)

In particular, the mean of r is approximately
√

2n/3π .

From theorem 1 it is also fairly easy to see that the mean square radius of gyration for EPn

is on the order O(n). Another quantity we will use for checking the validity of our algorithm
is the mean ACN of EPn, which is defined as the following. If we project an EPn onto a
plane along a given direction, we can count the number of crossings that are visible in this
particular projection. To be independent of the choice of a particular projection, we average
these crossing numbers over all projections and the number so obtained is called the average
crossing number (ACN). In fact, ACN is an important quantity since it is a natural geometric
measure of polymer entanglement as it refers to the actual number of crossings that can be
perceived while observing a non-perturbed trajectory of a given polymer or DNA [24]. The
following result reveals the asymptotic behavior of the mean ACN. Almost perfect matching
numerical results were given in the same paper containing this result.
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Figure 1. A single rotation involving two unit vectors.

Theorem 2. [14] Let χn be the ACN of an equilateral random walk of n steps; then

E(χn) = 3

16
n ln n + O(n).

On the other hand, theorem 1 also enables us to obtain theoretical results regarding the
topological aspects of EPn such as the following theorem, which have been confirmed by
many independently carried out simulations.

Theorem 3. [13] Let K be any knot type, then there exists a positive constant ε such that EPn

contains K as a connected sum component with a probability at least 1 − exp(−nε), provided
that n is large enough.

These theoretical results, as well as those well-documented numerical results obtained
using the existing generating methods, provide a solid background for us to examine the
validity of our new method.

3. The generalized hedgehog method

In this section we give a detailed description of the generalized hedgehog method, a new
algorithm for generating the equilateral random polygons.

3.1. Single and double rotation operations

Two operations are needed in the generalized hedgehog method. The first one, called a single
rotation, is used in the original hedgehog method. We provide it here for the convenience of
our reader.

Definition 1. Given two unit vectors �r1 and �r2, a single rotation involving �r1 and �r2 is a
rotation of �r1 and �r2 around the axis �r = �r1 + �r2 such that the rotation angle is uniformly
chosen between 0 and 2π . This rotation can be viewed in two ways as shown in figure 1.

Let �r1, �r2 and �r3 be three unit vectors (here we consider all vectors as rooted at the original
point O). Let �r1 = −→

OX, �r1 + �r2 = −→
OY and �r1 + �r2 + �r3 = −→

OZ. In the following we describe
a procedure that replaces �r1, �r2 and �r3 with three new unit vectors �r ′

1, �r ′
2 and �r ′

3 such that
�r1 + �r2 + �r3 = �r ′

1 + �r ′
2 + �r ′

3. We construct three unit vectors �r ′
1, �r ′

2 and �r ′
3 such that �r ′

1 + �r ′
2 + �r ′

3 = �r
(keep in mind that �r = −→

OZ = �r1 + �r2 + �r3 is a fixed vector in this process). The end points of
the vectors �r ′

1, �r ′
1 + �r ′

2 and �r ′
1 + �r ′

2 + �r ′
3 (=�r) define a 4-sided polygon with side lengths 1, 1, 1
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Figure 3. The determination of Y ′ and X′.

and r = |�r| = |−→OZ|. In the case that �r ′
1 = �r ′

2, we obtain a triangle of side lengths 1, 2 and r
as shown in figure 2.

In this case, the angle θ0 between the vector �r and �r ′
3 is given by the following formula

θ0 =

⎧⎪⎨
⎪⎩

cos−1

(
r2 − 3

2r

)
, r > 1

π, r � 1.

Note that the angle θ between �r and �r ′
3 is less than or equal to θ0. We will now choose a point

Y ′ uniformly on the spherical region defined by {U ∈ S(Z) : θ � θ0}, where S(Z) is the unit

sphere centered at Z and θ is the smaller angle between
−→
ZO and

−→
ZU . Let �r ′

3 = −→
OZ − −−→

OY ′.
Now S(O) and S(Y ′) intersect in a circle and we will choose a point X′ on it uniformly. See
figure 3 for an illustration of this process.

Finally, we define �r ′
1 = −−→

OX′ and �r ′
2 = −−→

OY ′ − −−→
OX′. Thus we have replaced the three unit

vectors �r1, �r2 and �r3 with �r ′
1, �r ′

2 and �r ′
3. We call this operation a double rotation of the vectors

�r1, �r2 and �r3. Let us emphasize that a double rotation involving �r1, �r2 and �r3 does not change

their sum �r1 + �r2 + �r3 since �r1 + �r ′
1 + �r ′

3 = −−→
OX′ + (

−−→
OY ′ − −−→

OX′) + (
−→
OZ − −−→

OY ′) = −→
OZ.

3.2. The algorithm

We will now describe the algorithm to be used to generate a random equilateral polygon of
length n. Depending on n is odd or even, the first step is slightly different.

Step 11. If n is odd, then we will generate a random unit vector �r1 uniformly over the unit
sphere starting from the origin O. Let the end point of �r1 be X. We then generate a random unit
vector �r2 starting from X by choosing its ending point Y uniformly on the unit circle which is

5
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the intersection of the two unit spheres S(O) and S(X). Finally we let �r3 = −→
YO. This gives

us a random equilateral polygon of length 3 since �r1 + �r2 + �r3 = �0.
Step 12. If n is even, then we first randomly choose two unit vectors �r1, �r2 uniformly

on the unit sphere S(O) and perform a single rotation involving �r1 and �r2. Combining the
two resulting vectors with �r3 = −�r1 and �r4 = −�r2 gives us a random equilateral polygon of
length 4. Let us name the resulting vectors still with the names �r1 to �r4.

Step 2. Randomly generate a unit vector �r (uniformly on the unit sphere). Randomly
choose two vectors �r ′ and �r ′′ from the previous list and replace them with −�r and the three
vectors resulted from a double rotation on �r, �r ′ and �r ′′. By the nature of the double rotation,
the sum of all the vectors in the list is always the zero vector at any step. This step adds two
vectors and the result is an equilateral polygon of four or five edges.

Step 2 may now be repeated and at step k we arrive at a list of either n = 2k + 1 or n =
2k + 2 unit vectors, depending on what we did at step 1. The list is then randomly shuffled.
By a misuse of notation, let us again name the vectors in the final list as �r1, �r2, . . . , �rn. Now
the line segments joining the end points of �r1, �r1 + �r2, . . . , �r1 + �r2 + · · · + �rn = �O define an
equilateral polygon of n edges.

4. The ergodicity of the generalized hedgehog algorithm

In this section, we show that the generalized hedgehog method introduced in the last section
is ergodic. That is, for any given equilateral polygon Pn of length n, there exist a set of n unit
vectors �r1, �r2, . . . , �rn such that Pn can be obtained by performing the algorithm described in
the last section on these vectors. First, we need the following lemma.

Lemma 1. Let �r1, �r2, . . . , �rn be any n � 4 unit vectors such that �r1 + �r2 + · · · + �rn = �0,
then there exist four distinct positive integers k1, k2, k3, k4 between 1 and n such that∣∣�rk1 + �rk2 + �rk3 + �rk4

∣∣ < 2.

Proof. Assume the contrary, then for any distinct integers k1, k2, k3, k4 between 1 and n, we
have

∣∣�rk1 + �rk2 + �rk3 + �rk4

∣∣ � 2. Let �rj = (xj , yj , zj ). By the given condition, we have

x2
j + y2

j + z2
j = 1

for each 1 � j � n and

n∑
j=1

xj = 0,

n∑
j=1

yj = 0,

n∑
j=1

zj = 0.

Square both sides of the above equations and sum over the results, we obtain

n +
∑
i 	=j

(xixj + yiyj + zizj ) = 0.

Therefore, ∑
i 	=j

(xixj + yiyj + zizj ) = −n < 0. (4)

On the other hand, since
∣∣�rk1 + �rk2 + �rk3 + �rk4

∣∣ � 2, we have(
xk1 + xk2 + xk3 + xk4

)2
+

(
yk1 + xk2 + yk3 + yk4

)2
+

(
zk1 + zk2 + zk3 + zk4

)2 � 4.

6
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Figure 4. The case of a polygon with four edges.

This implies that(
xk1xk2 + xk1xk3 + xk1xk4 + xk2xk3 + xk2xk4 + xk3xk4

)
+

(
yk1yk2 + yk1yk3 + yk1yk4 + yk2yk3 + yk2yk4 + yk3yk4

)
+

(
zk1zk2 + zk1zk3 + zk1zk4 + zk2zk3 + zk2zk4 + zk3zk4

)
� 0.

Sum both sides of the above inequality for all possible k1, k2, k3 and k4, we obtain∑
i 	=j

(
xixj + yiyj + zizj

)
� 0,

which contradicts (4). �

We are now ready to prove the following ergodicity theorem.

Theorem 4. The generalized hedgehog method is ergodic, that is, any configuration of an
equilateral polygon of n edges can be constructed from this algorithm.

Proof. For the simple case of n = 3, there is nothing to prove since any random equilateral
random polygon of length can be uniformly selected at step 1 in our algorithm. If P is an
equilateral polygon of length 4, we can perform a single rotation to put all four vectors in the
same plane as shown in figure 4. Apparently, these are two pairs of opposite vectors �r1,−�r1, �r2

and −�r2. In other words, P can be obtained by choosing �r1 and �r2 first, followed by a single
rotation involving �r1 and �r2 and finally combining the resulting vectors with �r3 = −�r1 and
�r4 = −�r2.

Let us now assume that we have proven for any equilateral polygon Pk of length k such
that 3 � k � n − 1, there exists k unit vectors �r1, �r2, . . . , �rk such that Pk can be obtained by
the generalized hedgehog algorithm involving these vectors, where n − 1 � 4. We will now
consider an equilateral polygon Pn of length n. Note that Pn is defined by n consecutive unit
vectors �r1, �r2, . . . , �rn such that �r1 + �r2 + · · · + �rn = �0. By lemma 1, there exist four distinct
integers k1, k2, k3 and k4 between 1 and n such that |�rk1 + �rk2 + �rk3 + �rk4 | < 2. Without loss
of generality (since we are allowed to shuffle the order of the vectors in the algorithm), let us
assume that k1 = 1, k2 = 2, k3 = 3 and k4 = 4. That is, |�r1 + �r2 + �r3 + �r4| < 2. Let U be the
end point of �r1 + �r2 + �r3 + �r4, Z be the end point of �r1 + �r2 + �r3, Y be the end point of �r1 + �r2

and X be the end point of �r1, as shown in figure 5.
We will now perform a double rotation such that the resulting �r ′

1 = −�r4. We see that this
can be done since OU = X′Z < 2, as shown in figure 5. Let us name the resulting vectors
�r ′

1, �r ′
2 and �r ′

3, respectively. Apparently, eliminating �r ′
1 and �r4 will give us an equilateral polygon

Pn−2 of length n− 2. In other words, Pn can be obtained by selecting �r ′
1 first, then performing

a double rotation involving �r ′
1, �r ′

2 and �r ′
3 (the latter two are edges of Pn−2), followed by adding

in the vector �r4 = −�r ′
1. By our assumption, Pn−2 can be obtained by the algorithm. Thus Pn

can also be obtained by the algorithm. �

7
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Figure 5. Creating the opposite pair.

Figure 6. Linear running time: the x-axis represents the length of the polygon and the y-axis the
time (in seconds) needed by the algorithm to generate 50 000 polygons.

5. Run time consideration and numerical comparisons with existing methods

In order to validate our algorithm we first tested the computational time needed to generate
a sample of 50 000 polygons. Next we analyzed distributions of geometrical and topological
properties commonly associated with closed circular molecules. These include the three-
dimensional distribution of the points on the polygon, the radius of gyration, the knotting
probability and the mean average crossing number. In all experiments described below
100 000 polygons were generated for each polygon size and sizes ranged from 20 to 1000 in
increments of 20. The quantities described were calculated for each molecule and averaged
over all the samples.

5.1. Run time determination and comparison

First we confirmed that the time complexity of the algorithm is linear with the length of the
polygon (see section 3). Figure 6 summarizes our result. It shows that the time needed
to generate an equilateral random polygon of length n follows y = 0.31n − 1.030. By
comparison, the time needed to generate an equilateral random polygon of length n using the
crankshaft method shows a growth rate of at least O(n2).

8
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Figure 7. Average vertex distance distribution from first vertex. The x-axis represents the vertex
within the polygon from which we calculated the distance to any other vertex. The y-axis represents
the average distance calculated. A χ2 goodness of fit test with df = 49 yields a χ2 value of
0.0504, indicating a near perfect fit.

(This figure is in colour only in the electronic version)

5.2. Distributions

First we investigated the average spatial distribution occupied by the points in the polygons
generated by our algorithm. We computed the average distance from the kth vertex (of
an equilateral random polygon of length n) to the origin (the 0th vertex) with varying k
values. In this calculation we expect that the average distance from the middle vertex Xn/2

of an equilateral random polygon of length n to the origin to be the maximum among the k
values. Furthermore, according to corollary 1, this average distance is estimated by

√
2n/3π .

Figure 7 below shows the distribution of distances for different points along the polygon. The
solid dots in the figure are from the plot of the function

√
2n/3π . Since the peak of each

curve represents the average distance from the middle vertex to the origin, a good fit means

9
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Figure 8. Kernel estimations of the pdf for the middle point distance for n = 200, 400, 1000 and
2000. The Gaussian kernel is used for the plots. The bandwidth for n = 200 is 0.5, for n = 400
and 1000 is 1 and for n = 2000 is 2.

that the dots should be at or near the peaks. This is clearly seen from the figure. Such a nice
fit certainly suggests that the random polygons generated using our method are following the
theoretical distribution in terms of the vertex to vertex distances. It also shows that

√
2n/3π

is a very good estimator of the average distance from the middle vertex to the origin.
In an independent numerical study, we generated 10 000 equilateral random polygons of

length 200, 400, 1000 and 2000 each and computed the distance between the origin and their
middle point vertex (namely X100, X200, X500 and X1000, respectively). We then carried out a
kernel estimation for the probability density function of this distance. Recall from corollary 1

that this probability density function can be estimated by g′(r) ≈ 4πr2
(√

6
πn

)3
exp

(− 6r2

n

)
.

Figure 8 shows the plots of the numerical pdfs obtained by the kernel estimation as well as

the plots of the theoretical curve 4πr2
(√

6
πn

)3
exp

(− 6r2

n

)
for the cases of n = 200, 400, 1000

and 2000. Again, the nice fits in these numerical studies strongly suggest that the random
polygons we generate are following their theoretical distributions, and that the approximating
pdf function g′(r) is quite accurate. It is worthwhile for us to point out that numerical studies
on the approximating pdf g′(r) have not been carried out before.

5.3. Radius of gyration

Next we studied the mean radius of gyration. The radius of gyration estimates the size of a
molecule and can be experimentally measured by standard sedimentation assays. In [18] it
was found that the squared radius of gyration of a polygonal molecule increases as 1

12n2ν with
ν = 0.5. Our result is in excellent agreement with that presented in [18] as shown in figure 9.
For comparison purposes we also included results obtained through our own implementation
of the crankshaft algorithm.
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Figure 9. Mean squared radius of gyration of polygons generated using the generalized Hedgehog
method with one standard deviation. The x-axis represents the number of segments within
the polygon generated and the y-axis represents the mean squared radius of gyration calculated.
The results by the crankshaft method and by Dobay et al [18] are provided for comparison. The
standard deviations are less than or about the size of the dots.

Figure 10. Knotting probability comparison. The x-axis represents the number of segments of the
polygon generated and the y-axis represents the knotting probability.

5.4. Knotting probability

Next we asked what is the probability that a given polygon is knotted. As stated in theorem 3,
P(knotted) � 1 − exp(−nε) for some positive constant ε [13]. In fact, as shown in
many numerical studies long EPs tend to be knotted with a knotting probability of the
form 1 − exp(−αn) with α ≈ 1

244 [11, 37]. We compared our results to those presented
in Micheletti et al [34] (where the crankshaft algorithm was used) and those calculated using
our own crankshaft algorithm implementation. Non-trivial knots are detected using the knot
determinant 
(−1) calculated by a program developed by some of the authors. Figure 10
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Figure 11. Mean average crossing number comparison. The x-axis represents the number of
segments within the polygons generated and y-axis represents the mean average crossing number.
The standard deviations are less than or about the size of the dots.

below illustrates the comparison of our experiments and shows an excellent agreement of the
three methods.

5.5. Average crossing number

The average crossing number (ACN) is a geometrical measure of the entanglement complexity
of the polygon and it has been proposed that knotted DNA molecules migrate in gel
electrophoresis proportionally to the average crossing number of their ideal configuration [53].
The ACN is known to grow as 3

16n ln(n) + O(n) as we mentioned earlier in theorem 2 [14].
We compared our mean ACN values with the values obtained using our own implementation
of the crankshaft method and the theoretical expected results derived from Diao et al [14].
The results are illustrated in figure 11.

6. Conclusions and ending remarks

Knots and links are commonly found in nucleic acids and proteins. DNA knots and links
have been used for many years in experimental laboratories and have been key to unveil the
action of some DNA binding proteins (e.g. [6, 7, 25]) and the chromosome organization in
certain viruses [3]. Protein knots on the other hand are novel structures [50] and hold a
great promise for better understanding the problem of protein folding [30]. Importantly their
true functional and evolutionary significance remains to be determined [29, 52]. In many
of these structural studies it is often necessary to generate large samples of non-correlated
polygonal curves. However this task has been hindered by the lack of efficient and ergodic
algorithms that generate such samples. Here we have presented a new algorithm to generate
large samples of independent knotted equilateral polygons. We have rigorously shown that
this algorithm is ergodic and also that it can reproduce current known numerical results for
the mean square radius of gyration, the knotting probability and the mean average crossing
number. Furthermore the algorithm seems to generate random equilateral random polygons
according to its theoretical distribution as indicated by the tests we carried out in our numerical
study. However it remains a challenging problem to prove or disprove this theoretically.

12



J. Phys. A: Math. Theor. 42 (2009) 095204 R Varela et al

This algorithm can be used to study knotting and linking of DNA molecules in free
solution. However more accurate representation of the DNA chain and proteins is needed. In
future studies we will address this problems and also extend the algorithm to study problems
of DNA knotting and linking in confinement.
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